Search results
Results from the WOW.Com Content Network
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
SHA-3 (Secure Hash Algorithm 3) is the latest [4] member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015. [5] [6] [7] Although part of the same series of standards, SHA-3 is internally different from the MD5-like structure of SHA-1 and SHA-2.
Algorithm and variant Output size (bits) Internal state size (bits) Block size (bits) Rounds Operations Security against collision attacks (bits) Security against length extension attacks
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
For example, SHA-256 operates on 512-bit blocks. The size of the output of HMAC is the same as that of the underlying hash function (e.g., 256 and 512 bits in the case of SHA-256 and SHA3-512, respectively), although it can be truncated if desired. HMAC does not encrypt the message.
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
Here is the formal technical definition of the puzzle friendliness property. [2] [1]A hash function H is said to be puzzle friendly if for every possible n-bit output value y, if k is chosen with a distribution with high min-entropy, then it is infeasible to find x such that H( k || x) = y (where the symbol "||" denotes concatenation) in time significantly less than 2 n.