enow.com Web Search

  1. Ad

    related to: intersection probability
  2. educator.com has been visited by 10K+ users in the past month

    • Physics Course

      Lessons by Experienced Tutors

      Easy to Understand Theory

    • Biology Course

      Unlimited Access to Library

      Tons of Worked Out Examples

Search results

  1. Results from the WOW.Com Content Network
  2. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  3. Borel–Cantelli lemma - Wikipedia

    en.wikipedia.org/wiki/Borel–Cantelli_lemma

    The intersection of infinitely many such events is a set of outcomes common to all of them. However, the sum ΣPr( X n = 0) converges to π 2 /6 ≈ 1.645 < ∞, and so the Borel–Cantelli Lemma states that the set of outcomes that are common to infinitely many such events occurs with probability zero.

  4. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] A simple example is the tossing of a fair (unbiased) coin. Since the ...

  5. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    The conditional probability can be found by the quotient of the probability of the joint intersection of events A and B, that is, (), the probability at which A and B occur together, and the probability of B: [2] [6] [7] = ().

  6. Probability measure - Wikipedia

    en.wikipedia.org/wiki/Probability_measure

    The conditional probability based on the intersection of events defined as: = (). [2] satisfies the probability measure requirements so long as () is not zero. [ 3 ] Probability measures are distinct from the more general notion of fuzzy measures in which there is no requirement that the fuzzy values sum up to 1 , {\displaystyle 1,} and the ...

  7. Borel set - Wikipedia

    en.wikipedia.org/wiki/Borel_set

    An important example, especially in the theory of probability, is the Borel algebra on the set of real numbers.It is the algebra on which the Borel measure is defined. . Given a real random variable defined on a probability space, its probability distribution is by definition also a measure on the Borel a

  8. Probability axioms - Wikipedia

    en.wikipedia.org/wiki/Probability_axioms

    The standard probability axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. [1] These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. [2] There are several other (equivalent) approaches to formalising ...

  9. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    This is a stronger condition than the probability of their intersection being zero. If A and B are disjoint events, then P(A ∪ B) = P(A) + P(B). This extends to a (finite or countably infinite) sequence of events. However, the probability of the union of an uncountable set of events is not the sum of their probabilities.

  1. Ad

    related to: intersection probability