Search results
Results from the WOW.Com Content Network
During the Industrial Revolution, new methods of producing bar iron by substituting coke for charcoal emerged, and these were later applied to produce steel, ushering in a new era of greatly increased use of iron and steel that some contemporaries described as a new "Iron Age".
The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge, New York: Press Syndicate of the University of Cambridge. ISBN 0-521-09418-6. Schubert, H.R. (1958). Extraction and Production of Metals: Iron and Steel. A History of Technology IV: The Industrial Revolution.
In 1750, the UK imported 31,200 tons of bar iron and either refined from cast iron or directly produced 18,800 tons of bar iron using charcoal and 100 tons using coke. In 1796, the UK was making 125,000 tons of bar iron with coke and 6,400 tons with charcoal; imports were 38,000 tons and exports were 24,600 tons.
Henry Cort (c. 1740 – 23 May 1800) was an English ironware producer who was formerly a Navy pay agent. During the Industrial Revolution in England, Cort began refining iron from pig iron to wrought iron (or bar iron) using innovative production systems.
Steel is an alloy composed of between 0.2 and 2.0 percent carbon, with the balance being iron. From prehistory through the creation of the blast furnace, iron was produced from iron ore as wrought iron, 99.82–100 percent Fe, and the process of making steel involved adding carbon to iron, usually in a serendipitous manner, in the forge, or via the cementation process.
The process of converting pig iron into wrought iron (also known as bar iron) was at that time carried out in a finery forge, which was fuelled by charcoal. Charcoal was a limited resource, but coal, more widely available, could not be used because the sulphur in coal would adversely affect the quality of the wrought iron. [1] Reverbatory furnace
Bloomeries — where bar iron was produced from iron ore by direct reduction; Electrolytic smelting — Employs a chromium/iron anode that can survive a 2,850 °F (1,570 °C) to produce decarbonized iron and 2/3 of a ton of industrial-quality oxygen per ton of iron. A thin film of metal oxide forms on the anode in the intense heat.
As it contained far fewer impurities than normal coal, the iron it produced was of a superior quality. Along with many other industrial developments that were going on in other parts of the country, this discovery was a major factor in the growing industrialisation of Britain, which was to become known as the Industrial Revolution.