Search results
Results from the WOW.Com Content Network
The terms aerobic respiration, anaerobic respiration and fermentation (substrate-level phosphorylation) do not refer to primary nutritional groups, but simply reflect the different use of possible electron acceptors in particular organisms, such as O 2 in aerobic respiration, or nitrate (NO − 3), sulfate (SO 2−
There are many parallel aspects of aerobic fermentation in tumor cells that are also seen in Crabtree-positive yeasts. Further research into the evolution of aerobic fermentation in yeast such as S. cerevisiae can be a useful model for understanding aerobic fermentation in tumor cells. This has a potential for better understanding cancer and ...
Anaerobic respiration is used by microorganisms, either bacteria or archaea, in which neither oxygen (aerobic respiration) nor pyruvate derivatives (fermentation) is the final electron acceptor. Rather, an inorganic acceptor such as sulfate ( SO 2− 4 ), nitrate ( NO − 3 ), or sulfur (S) is used. [ 16 ]
Numerous fermentation pathways exist such as lactic acid fermentation, mixed acid fermentation, 2-3 butanediol fermentation where organic compounds are reduced to organic acids and alcohol. [8] [4] The energy yield of anaerobic respiration and fermentation (i.e. the number of ATP molecules generated) is less than in aerobic respiration. [8]
[1] [2] In this type of respiration, oxygen serves as the terminal electron acceptor for the electron transport chain. [1] Aerobic respiration has the advantage of yielding more energy (adenosine triphosphate or ATP) than fermentation or anaerobic respiration, [3] but obligate aerobes are subject to high levels of oxidative stress. [2]
The following article is a comparison of aerobic and anaerobic digestion. In both aerobic and anaerobic systems the growing and reproducing microorganisms within them require a source of elemental oxygen to survive. [1] In an anaerobic system there is an absence of gaseous oxygen.
They gather mostly at the top because aerobic respiration generates more ATP than either fermentation or anaerobic respiration. 4: Microaerophiles need oxygen because they cannot ferment or respire anaerobically. However, they are poisoned by high concentrations of oxygen. They gather in the upper part of the test tube but not the very top.
Fermentation, like aerobic respiration, begins by breaking glucose into two pyruvate molecules. From here, it proceeds using endogenous organic electron receptors, whereas cellular respiration uses exogenous receptors, such as oxygen in aerobic respiration and nitrate in anaerobic respiration. These varied organic receptors each generate ...