enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.

  3. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    For an approximately normal data set, the values within one standard deviation of the mean account for about 68% of the set; while within two standard deviations account for about 95%; and within three standard deviations account for about 99.7%. Shown percentages are rounded theoretical probabilities intended only to approximate the empirical ...

  4. 97.5th percentile point - Wikipedia

    en.wikipedia.org/wiki/97.5th_percentile_point

    In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations. The approximate value of this number is 1.96, meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean.

  5. Generalized logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_logistic...

    The term generalized logistic distribution is used as the name for several different families of probability distributions. For example, Johnson et al. [1] list four forms, which are listed below. Type I has also been called the skew-logistic distribution.

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  7. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Deviance (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviance_(statistics)

    Suppose in the framework of the GLM, we have two nested models, M 1 and M 2. In particular, suppose that M 1 contains the parameters in M 2 , and k additional parameters. Then, under the null hypothesis that M 2 is the true model, the difference between the deviances for the two models follows, based on Wilks' theorem , an approximate chi ...