Search results
Results from the WOW.Com Content Network
Over the real numbers, a discriminant is equivalent to −1, 0, or 1. Over the rational numbers , a discriminant is equivalent to a unique square-free integer . By a theorem of Jacobi , a quadratic form over a field of characteristic different from 2 can be expressed, after a linear change of variables, in diagonal form as
The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.
Since the number of integral ideals of given norm is finite, the finiteness of the class number is an immediate consequence, [1] and further, the ideal class group is generated by the prime ideals of norm at most M K. Minkowski's bound may be used to derive a lower bound for the discriminant of a field K given n, r 1 and r 2.
AC – Axiom of Choice, [1] or set of absolutely continuous functions. a.c. – absolutely continuous. acrd – inverse chord function. ad – adjoint representation (or adjoint action) of a Lie group. adj – adjugate of a matrix. a.e. – almost everywhere. AFSOC - Assume for the sake of contradiction; Ai – Airy function. AL – Action limit.
These can be found in terms of the discriminant of Q. For example, in the case x 2 + x + 2 given above, the discriminant is −7 so that 7 is the only prime that has a chance of making it satisfy the criterion. Modulo 7, it becomes (x − 3) 2 — a repeated root is inevitable, since the discriminant is 0 mod 7. Therefore the variable shift is ...
The following table shows some orders of small discriminant of quadratic fields. The maximal order of an algebraic number field is its ring of integers, and the discriminant of the maximal order is the discriminant of the field. The discriminant of a non-maximal order is the product of the discriminant of the corresponding maximal order by the ...
Its discriminant as quadratic form need not be +1 (in fact this happens only for the case K = Q). Define the inverse different or codifferent [ 3 ] [ 4 ] or Dedekind's complementary module [ 5 ] as the set I of x ∈ K such that tr( xy ) is an integer for all y in O K , then I is a fractional ideal of K containing O K .
Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution y 1 ( x ) {\displaystyle y_{1}(x)} is known and a second linearly independent solution y 2 ( x ) {\displaystyle y_{2}(x)} is desired.