Search results
Results from the WOW.Com Content Network
Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.
Pages in category "Symmetric functions" The following 43 pages are in this category, out of 43 total. This list may not reflect recent changes. ...
One context in which symmetric polynomial functions occur is in the study of monic univariate polynomials of degree n having n roots in a given field.These n roots determine the polynomial, and when they are considered as independent variables, the coefficients of the polynomial are symmetric polynomial functions of the roots.
The name "symmetric function" for elements of Λ R is a misnomer: in neither construction are the elements functions, and in fact, unlike symmetric polynomials, no function of independent variables can be associated to such elements (for instance e 1 would be the sum of all infinitely many variables, which is not defined unless restrictions are ...
That is, any symmetric polynomial P is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree d in n variables for each positive integer d ≤ n, and it is formed by adding together all distinct products of d distinct variables.
Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.
The chromatic symmetric function is a symmetric function invariant of graphs studied in algebraic graph theory, a branch of mathematics. It is the weight generating function for proper graph colorings , and was originally introduced by Richard Stanley as a generalization of the chromatic polynomial of a graph.
The Stanley symmetric function F w is homogeneous with degree equal to the number of inversions of w.Unlike other nice families of symmetric functions, the Stanley symmetric functions have many linear dependencies and so do not form a basis of the ring of symmetric functions.