enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  3. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Cubic, quartic and higher polynomials. For regression with high-order polynomials, the use of orthogonal polynomials is recommended. [15] Numerical smoothing and differentiation — this is an application of polynomial fitting. Multinomials in more than one independent variable, including surface fitting; Curve fitting with B-splines [12]

  4. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.

  5. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    With low-order polynomials, the curve is more likely to fall near the midpoint (it's even guaranteed to exactly run through the midpoint on a first degree polynomial). Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a ...

  6. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.

  7. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  8. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    It has the advantage that second derivatives, which can be challenging to compute, are not required. [1] Non-linear least squares problems arise, for instance, in non-linear regression, where parameters in a model are sought such that the model is in good agreement with available observations.

  9. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...