Search results
Results from the WOW.Com Content Network
The thermal entrance length for a fluid with a Prandtl number greater than one will be longer than the hydrodynamic entrance length, and shorter if the Prandtl number is less than one. For example, molten sodium has a low Prandtl number of 0.004, [12] so the thermal entrance length will be significantly shorter than the hydraulic entrance length.
L is the length Re is the Reynolds number and Pr is the Prandtl number. This number is useful in determining the thermally developing flow entrance length in ducts. A Graetz number of approximately 1000 or less is the point at which flow would be considered thermally fully developed. [2]
Hydrodynamic entrance length is that part of the tube in which the momentum boundary layer grows and the velocity distribution changes with length. The fixed velocity distribution in the fully developed region is called fully developed velocity profile. The steady-state continuity and conservation of momentum equations in two-dimensional are
A schematic diagram pressure-driven horizontal flow. The flow is uni-directional in the direction of the pressure gradient. A frequently-encountered situation in experiments is pressure-driven channel flow [6] (see diagram). This situation exhibits an equilibrium in which there is flow only in the horizontal direction (along the pressure ...
Here, the bar on the left side of the figure is the mixing length. In fluid dynamics, the mixing length model is a method attempting to describe momentum transfer by turbulence Reynolds stresses within a Newtonian fluid boundary layer by means of an eddy viscosity. The model was developed by Ludwig Prandtl in the early 20th century. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
In the cardiovascular system, the pulsation frequency, density, and dynamic viscosity are constant, however the Characteristic length, which in the case of blood flow is the vessel diameter, changes by three orders of magnitudes (OoM) between the aorta and fine capillaries. The Womersley number thus changes due to the variations in vessel size ...