Ad
related to: arithmetic geometry examples
Search results
Results from the WOW.Com Content Network
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. [1] Arithmetic geometry is centered around Diophantine geometry , the study of rational points of algebraic varieties .
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .
For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set.
Almgren–Pitts min-max theory; Approximation theory; Arakelov theory; Asymptotic theory; Automata theory; Bass–Serre theory; Bifurcation theory; Braid theory
Metric spaces are also studied in their own right in metric geometry [2] and analysis on metric spaces. [ 3 ] Many of the basic notions of mathematical analysis , including balls , completeness , as well as uniform , Lipschitz , and Hölder continuity , can be defined in the setting of metric spaces.
Alexandrov's uniqueness theorem (discrete geometry) Alperin–Brauer–Gorenstein theorem (finite groups) Alspach's theorem (graph theory) Amitsur–Levitzki theorem (linear algebra) Analyst's traveling salesman theorem (discrete mathematics) Analytic Fredholm theorem (functional analysis) Anderson's theorem (real analysis)
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
Applying the structure theorem for finitely generated modules over a principal ideal domain to this example shows the existence of the rational and Jordan canonical forms. The concept of a Z-module agrees with the notion of an abelian group. That is, every abelian group is a module over the ring of integers Z in a unique way.
Ad
related to: arithmetic geometry examples