Search results
Results from the WOW.Com Content Network
A cell during anaphase. Microtubules are visible in green. Stages of late M phase in a vertebrate cell. Anaphase (from Ancient Greek ἀνα-() 'back, backward' and φάσις (phásis) 'appearance') is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell.
This is an accepted version of this page This is the latest accepted revision, reviewed on 19 December 2024. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
Chromosome segregation occurs at two separate stages during meiosis called anaphase I and anaphase II (see meiosis diagram). In a diploid cell there are two sets of homologous chromosomes of different parental origin (e.g. a paternal and a maternal set).
Cell division in prokaryotes (binary fission) and eukaryotes (mitosis and meiosis). The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3.
In general, nondisjunction can occur in any form of cell division that involves ordered distribution of chromosomal material. Higher animals have three distinct forms of such cell divisions: Meiosis I and meiosis II are specialized forms of cell division occurring during generation of gametes (eggs and sperm) for sexual reproduction, mitosis is the form of cell division used by all other cells ...
During the process of meiosis, homologous chromosomes can recombine and produce new combinations of genes in the daughter cells. Sorting of homologous chromosomes during meiosis. Meiosis is a round of two cell divisions that results in four haploid daughter cells that each contain half the number of chromosomes as the parent cell. [10]
Anaphase lag is a consequence of an event during cell division where sister chromatids do not properly separate from each other because of improper spindle formation. [1] The chromosome or chromatid does not properly migrate during anaphase and the daughter cells will lose some genetic information.
[1] [2] The dicentric chromatid is pulled apart during anaphase of meiosis I with such force that the chromosome breaks at random positions. [2] These broken fragments result in deletions of genes that lead to genetically unbalanced gametes.