Search results
Results from the WOW.Com Content Network
The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. [ 5 ] [ 6 ] In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene .
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates , where they prevent cancer formation. [ 5 ]
P53 causes cells to enter apoptosis and disrupt further cell division therefore preventing that cell from becoming cancerous (16). In the majority of cancers it is the p53 pathway that has become mutated resulting in lack of ability to terminate dysfunctional cells.
P53's normal function is to regulate genes that control apoptosis. As survivin is a known inhibitor of apoptosis, it can be implied that p53 repression of survivin is one mechanism by which cells can undergo apoptosis upon induction by apoptotic stimuli or signals.
When there is too much damage, apoptosis is triggered in order to protect the organism from potentially harmful cells.7 p53, also known as a tumor suppressor gene, is a major regulatory protein in the DNA damage response system which binds directly to the promoters of its target genes. p53 acts primarily at the G1 checkpoint (controlling the G1 ...
In the field of genetics, a suicide gene is a gene that will cause a cell to kill itself through the process of apoptosis (programmed cell death). Activation of a suicide gene can cause death through a variety of pathways, but one important cellular "switch" to induce apoptosis is the p53 protein.
An important downstream target of ATM and ATR is p53, as it is required for inducing apoptosis following DNA damage. [60] The cyclin-dependent kinase inhibitor p21 is induced by both p53-dependent and p53-independent mechanisms and can arrest the cell cycle at the G1/S and G2/M checkpoints by deactivating cyclin/cyclin-dependent kinase ...
P53, a transcription factor, can bind two sites within the human TIGAR gene to activate expression. [9] [13] One site is found within the first intron, and binds p53 with high affinity. [9] [13] The second is found just prior to the first exon, binds p53 with low affinity, [9] [13] and is conserved between mice and humans. [9]