enow.com Web Search

  1. Ads

    related to: euler characteristics formula example math worksheet grade 1 pdf download

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    For example, the teardrop orbifold has Euler characteristic 1 + ⁠ 1 / p ⁠, where p is a prime number corresponding to the cone angle ⁠ 2 π / p ⁠. The concept of Euler characteristic of the reduced homology of a bounded finite poset is another generalization, important in combinatorics .

  3. File:Opera Omnia Euler.I.1..ocr.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Opera_Omnia_Euler.I.1...

    Original file (1,243 × 1,843 pixels, file size: 38.32 MB, MIME type: application/pdf, 748 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.

  4. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    Indeed, to obtain this formula, remove disjoint disc neighborhoods of the branch points from S and their preimages in S' so that the restriction of is a covering. Removing a disc from a surface lowers its Euler characteristic by 1 by the formula for connected sum, so we finish by the formula for a non-ramified covering.

  5. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k , where k is the non-orientable genus.

  6. Euler characteristic of an orbifold - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic_of_an...

    In differential geometry, the Euler characteristic of an orbifold, or orbifold Euler characteristic, is a generalization of the topological Euler characteristic that includes contributions coming from nontrivial automorphisms.

  7. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue. Euler's criterion is related to the law of quadratic reciprocity.

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula ...

  9. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    While Euler's identity is a direct result of Euler's formula, published in his monumental work of mathematical analysis in 1748, Introductio in analysin infinitorum, [16] it is questionable whether the particular concept of linking five fundamental constants in a compact form can be attributed to Euler himself, as he may never have expressed it.

  1. Ads

    related to: euler characteristics formula example math worksheet grade 1 pdf download