Ad
related to: definition of partially ordered set in algebra 3 exampleseducation.com has been visited by 100K+ users in the past month
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Education.com Blog
Search results
Results from the WOW.Com Content Network
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
A set with a partial order on it is called a partially ordered set, poset, or just ordered set if the intended meaning is clear. By checking these properties, one immediately sees that the well-known orders on natural numbers , integers , rational numbers and reals are all orders in the above sense.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice.
A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...
Small finite examples: The three partially ordered sets on the left are trees (in blue); one branch of one of the trees is highlighted (in green). The partially ordered set on the right (in red) is not a tree because x 1 < x 3 and x 2 < x 3, but x 1 is not comparable to x 2 (dashed orange line).
A partially ordered group G is called integrally closed if for all elements a and b of G, if a n ≤ b for all natural n then a ≤ 1. [1]This property is somewhat stronger than the fact that a partially ordered group is Archimedean, though for a lattice-ordered group to be integrally closed and to be Archimedean is equivalent. [2]
In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.
Ad
related to: definition of partially ordered set in algebra 3 exampleseducation.com has been visited by 100K+ users in the past month