enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of ′ is the second derivative, denoted as ⁠ ″ ⁠, and the derivative of ″ is the third derivative, denoted as ⁠ ‴ ⁠. By continuing this process, if it exists, the ⁠ n {\displaystyle n} ⁠ th derivative is the derivative of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ th derivative or the derivative of order ...

  3. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  4. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    The value of the derivative of y at a point x = a may be expressed in two ways using Leibniz's notation: | = (). Leibniz's notation allows one to specify the variable for differentiation (in the denominator).

  5. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    the partial differential of y with respect to any one of the variables x 1 is the principal part of the change in y resulting from a change dx 1 in that one variable. The partial differential is therefore involving the partial derivative of y with respect to x 1.

  6. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  7. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  8. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    For example, the type T of binary trees containing values of type A can be represented as the algebra generated by the transformation 1+A×T 2 →T. The "1" represents the construction of an empty tree, and the second term represents the construction of a tree from a value and two subtrees. The "+" indicates that a tree can be constructed ...

  9. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In an example application of this procedure, (3x + 5)/(1 − 2x) 2 can be decomposed in the form ... for m = 1.) For instance the first derivative at x = 1 gives ...