Ads
related to: solving logarithmic word equationseducation.com has been visited by 100K+ users in the past month
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Activities & Crafts
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The discrete logarithm is the integer n solving the equation =, where x is an element of the group. Carrying out the exponentiation can be done efficiently, but the discrete logarithm is believed to be very hard to calculate in some groups.
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.
A word equation is a formal equality:= = between a pair of words and , each over an alphabet comprising both constants (c.f. ) and unknowns (c.f. ). [1] An assignment of constant words to the unknowns of is said to solve if it maps both sides of to identical words.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
In mathematics, the common logarithm (aka "standard logarithm") is the logarithm with base 10. [1] It is also known as the decadic logarithm , the decimal logarithm and the Briggsian logarithm . The name "Briggsian logarithm" is in honor of the British mathematician Henry Briggs who conceived of and developed the values for the "common logarithm".
Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In number theory , the more commonly used term is index : we can write x = ind r a (mod m ) (read "the index of a to the base r modulo m ") for r x ≡ a (mod m ) if r is a primitive root of m and gcd ...
Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
Exponentiating this equation yields Euler's formula. Note that the logarithmic statement is not universally correct for complex numbers, since a complex logarithm can have infinitely many values, differing by multiples of 2πi. Visualization of Euler's formula as a helix in three-dimensional space.
Ads
related to: solving logarithmic word equationseducation.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month