Ads
related to: reflecting telescope lensesdiscoverpanel.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
A reflecting telescope (also called a reflector) is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic ...
Primary lens: The objective of a refracting telescope. Primary mirror: The objective of a reflecting telescope. Corrector plate: A full aperture negative lens placed before a primary mirror designed to correct the optical aberrations of the mirror. Schmidt corrector plate: An aspheric-shaped corrector plate used in the Schmidt telescope.
Newtonian telescope design. A Newtonian telescope is composed of a primary mirror or objective, usually parabolic in shape, and a smaller flat secondary mirror.The primary mirror makes it possible to collect light from the pointed region of the sky, while the secondary mirror redirects the light out of the optical axis at a right angle so it can be viewed with an eyepiece.
Using a siderostat incurs a reflective loss. Larger meniscus lenses have been used in later catadioptric telescopes which mix refractors and reflectors in the image-forming part of the telescope. As with reflecting telescopes, there was an ongoing struggle to balance cost with size, quality, and usefulness.
The first of these was the Hamiltonian telescope patented by W. F. Hamilton in 1814. The Schupmann medial telescope designed by German optician Ludwig Schupmann near the end of the 19th century placed the catadioptric mirror beyond the focus of the refractor primary and added a third correcting/focusing lens to the system.
Light path in a Cassegrain reflecting telescope. The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture.
Ads
related to: reflecting telescope lensesdiscoverpanel.com has been visited by 10K+ users in the past month