enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellulose - Wikipedia

    en.wikipedia.org/wiki/Cellulose

    Cellulose is derived from D-glucose units, which condense through β(1→4)-glycosidic bonds. This linkage motif contrasts with that for α(1→4)-glycosidic bonds present in starch and glycogen. Cellulose is a straight chain polymer.

  3. Glycosidic bond - Wikipedia

    en.wikipedia.org/wiki/Glycosidic_bond

    Glycosidic bonds of the form discussed above are known as O-glycosidic bonds, in reference to the glycosidic oxygen that links the glycoside to the aglycone or reducing end sugar. In analogy, one also considers S-glycosidic bonds (which form thioglycosides ), where the oxygen of the glycosidic bond is replaced with a sulfur atom.

  4. Polysaccharide - Wikipedia

    en.wikipedia.org/wiki/Polysaccharide

    Cellulose is a polymer made with repeated glucose units bonded together by beta-linkages. Humans and many animals lack an enzyme to break the beta-linkages, so they do not digest cellulose. Certain animals, such as termites can digest cellulose, because bacteria possessing the enzyme are present in their gut. Cellulose is insoluble in water.

  5. Cellulase - Wikipedia

    en.wikipedia.org/wiki/Cellulase

    Cellulose breakdown is of considerable economic importance, because it makes a major constituent of plants available for consumption and use in chemical reactions. The specific reaction involved is the hydrolysis of the 1,4-β-D-glycosidic linkages in cellulose, hemicellulose, lichenin, and cereal β-D-glucans. Because cellulose molecules bind ...

  6. Beta-glucan - Wikipedia

    en.wikipedia.org/wiki/Beta-glucan

    Although technically β-glucans are chains of D-glucose polysaccharides linked by β-type glycosidic bonds, by convention not all β-D-glucose polysaccharides are categorized as β-glucans. [4] Cellulose is not conventionally considered a β-glucan, as it is insoluble and does not exhibit the same physicochemical properties as other cereal or ...

  7. Glycoside hydrolase - Wikipedia

    en.wikipedia.org/wiki/Glycoside_hydrolase

    In organic chemistry, glycoside hydrolases can be used as synthetic catalysts to form glycosidic bonds through either reverse hydrolysis (kinetic approach) where the equilibrium position is reversed; or by transglycosylation (kinetic approach) whereby retaining glycoside hydrolases can catalyze the transfer of a glycosyl moiety from an ...

  8. Biopolymer - Wikipedia

    en.wikipedia.org/wiki/Biopolymer

    Polysaccharides (sugar polymers) can be linear or branched and are typically joined with glycosidic bonds. The exact placement of the linkage can vary, and the orientation of the linking functional groups is also important, resulting in α- and β-glycosidic bonds with numbering definitive of the linking carbons' location in the ring.

  9. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Carbohydrates are typically stored as long polymers of glucose molecules with glycosidic bonds for structural support (e.g. chitin, cellulose) or for energy storage (e.g. glycogen, starch). However, the strong affinity of most carbohydrates for water makes storage of large quantities of carbohydrates inefficient due to the large molecular ...