enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    If the energy–momentum tensor T μν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor = (+) is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory): + = (+).

  3. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    Next, notice that only 10 of the original 14 equations are independent, because the continuity equation ; = is a consequence of Einstein's equations. This reflects the fact that the system is gauge invariant (in general, absent some symmetry, any choice of a curvilinear coordinate net on the same system would correspond to a numerically ...

  4. Kerr–Newman–de–Sitter metric - Wikipedia

    en.wikipedia.org/wiki/Kerr–Newman–de–Sitter...

    The Kerr–Newman–de–Sitter metric (KNdS) [1] [2] is the one of the most general stationary solutions of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass embedded in an expanding universe.

  5. Initial value formulation (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Initial_value_formulation...

    The initial value formulation of general relativity is a reformulation of Albert Einstein's theory of general relativity that describes a universe evolving over time.. Each solution of the Einstein field equations encompasses the whole history of a universe – it is not just some snapshot of how things are, but a whole spacetime: a statement encompassing the state of matter and geometry ...

  6. Rotating black hole - Wikipedia

    en.wikipedia.org/wiki/Rotating_black_hole

    A rotating black hole is a solution of Einstein's field equation. There are two known exact solutions, the Kerr metric and the Kerr–Newman metric , which are believed to be representative of all rotating black hole solutions, in the exterior region.

  7. Numerical relativity - Wikipedia

    en.wikipedia.org/wiki/Numerical_relativity

    The field of numerical relativity emerged from the desire to construct and study more general solutions to the field equations by approximately solving the Einstein equations numerically. A necessary precursor to such attempts was a decomposition of spacetime back into separated space and time.

  8. Non-exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Non-exact_solutions_in...

    These solutions are typically found by treating the gravitational field, , as a background space-time, , (which is usually an exact solution) plus some small perturbation, . Then one is able to solve the Einstein field equations as a series in h {\displaystyle h} , dropping higher order terms for simplicity.

  9. Dust solution - Wikipedia

    en.wikipedia.org/wiki/Dust_solution

    In general relativity, a dust solution is a fluid solution, a type of exact solution of the Einstein field equation, in which the gravitational field is produced entirely by the mass, momentum, and stress density of a perfect fluid that has positive mass density but vanishing pressure.