enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Apriori algorithm - Wikipedia

    en.wikipedia.org/wiki/Apriori_algorithm

    The code is distributed as free software under the MIT license. The R package arules contains Apriori and Eclat and infrastructure for representing, manipulating and analyzing transaction data and patterns. Efficient-Apriori is a Python package with an implementation of the algorithm as presented in the original paper.

  3. Frequent pattern discovery - Wikipedia

    en.wikipedia.org/wiki/Frequent_pattern_discovery

    Frequent pattern discovery (or FP discovery, FP mining, or Frequent itemset mining) is part of knowledge discovery in databases, Massive Online Analysis, and data mining; it describes the task of finding the most frequent and relevant patterns in large datasets. [1] [2] The concept was first introduced for mining transaction databases. [3]

  4. Association rule learning - Wikipedia

    en.wikipedia.org/wiki/Association_rule_learning

    For example a 10^4 frequent 1-itemset will generate a 10^7 candidate 2-itemset. The algorithm also needs to frequently scan the database, to be specific n+1 scans where n is the length of the longest pattern. Apriori is slower than the Eclat algorithm. However, Apriori performs well compared to Eclat when the dataset is large.

  5. Massive Online Analysis - Wikipedia

    en.wikipedia.org/wiki/Massive_Online_Analysis

    Frequent pattern mining. Itemsets [11] Graphs [12] Change detection algorithms [13] These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time. MOA supports bi-directional interaction with Weka. MOA is free software released under the GNU GPL.

  6. Affinity analysis - Wikipedia

    en.wikipedia.org/wiki/Affinity_analysis

    There are two important metrics for performing the association rules mining technique: support and confidence. Also, a priori algorithm is used to reduce the search space for the problem. [1] The support metric in the association rule learning algorithm is defined as the frequency of the antecedent or consequent appearing together in a data set ...

  7. Category:Data mining algorithms - Wikipedia

    en.wikipedia.org/.../Category:Data_mining_algorithms

    Pages in category "Data mining algorithms" The following 6 pages are in this category, out of 6 total. ... Apriori algorithm; G. GSP algorithm; I. Inductive miner; T ...

  8. Sequential pattern mining - Wikipedia

    en.wikipedia.org/wiki/Sequential_Pattern_Mining

    Sequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. [ 1 ] [ 2 ] It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity.

  9. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.