enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...

  3. Convex hull - Wikipedia

    en.wikipedia.org/wiki/Convex_hull

    Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure

  4. Quickhull - Wikipedia

    en.wikipedia.org/wiki/Quickhull

    Input = a set S of n points Assume that there are at least 2 points in the input set S of points function QuickHull(S) is // Find convex hull from the set S of n points Convex Hull := {} Find left and right most points, say A & B, and add A & B to convex hull Segment AB divides the remaining (n − 2) points into 2 groups S1 and S2 where S1 are points in S that are on the right side of the ...

  5. Graham scan - Wikipedia

    en.wikipedia.org/wiki/Graham_scan

    A demo of Graham's scan to find a 2D convex hull. Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. [1] The algorithm finds all vertices of the convex hull ordered along its boundary.

  6. Chan's algorithm - Wikipedia

    en.wikipedia.org/wiki/Chan's_algorithm

    A 2D demo for Chan's algorithm. Note however that the algorithm divides the points arbitrarily, not by x-coordinate. In computational geometry, Chan's algorithm, [1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space.

  7. Dynamic convex hull - Wikipedia

    en.wikipedia.org/wiki/Dynamic_convex_hull

    The dynamic convex hull problem is a class of dynamic problems in computational geometry.The problem consists in the maintenance, i.e., keeping track, of the convex hull for input data undergoing a sequence of discrete changes, i.e., when input data elements may be inserted, deleted, or modified.

  8. Convex hull of a simple polygon - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_of_a_simple...

    The convex hull of a simple polygon (blue). Its four pockets are shown in yellow; the whole region shaded in either color is the convex hull. In discrete geometry and computational geometry, the convex hull of a simple polygon is the polygon of minimum perimeter that contains a given simple polygon.

  9. Convexity in economics - Wikipedia

    en.wikipedia.org/wiki/Convexity_in_economics

    For example, a solid cube is convex; however, anything that is hollow or dented, for example, a crescent shape, is non‑convex. Trivially, the empty set is convex. More formally, a set Q is convex if, for all points v 0 and v 1 in Q and for every real number λ in the unit interval [0,1], the point (1 − λ) v 0 + λv 1. is a member of Q.