Search results
Results from the WOW.Com Content Network
The semi-Fibonacci sequence (sequence A030067 in the OEIS) is defined via the same recursion for odd-indexed terms (+) = + and () =, but for even indices () = (), . The bisection A030068 of odd-indexed terms s ( n ) = a ( 2 n − 1 ) {\displaystyle s(n)=a(2n-1)} therefore verifies s ( n + 1 ) = s ( n ) + a ( n ) {\displaystyle s(n+1)=s(n)+a(n ...
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two numbers that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .
The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. [1] This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ...
A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...
Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...
The reciprocal Fibonacci constant ψ is the sum of the reciprocals of the Fibonacci numbers: = = = + + + + + + + +. Because the ratio of successive terms tends to the reciprocal of the golden ratio, which is less than 1, the ratio test shows that the sum converges.
In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774. [1] [2]
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}