enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. K-factor (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/K-factor_(metallurgy)

    The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]

  3. List of thermal conductivities - Wikipedia

    en.wikipedia.org/wiki/List_of_thermal_conductivities

    Instead the formula that would fit some of the Bonales data is k ≈ 2.0526 - 0.0176TC and not k = -0.0176 + 2.0526T as they say on page S615 and also the values they posted for Alexiades and Solomon do not fit the other formula that they posted on table 1 on page S611 and the formula that would fit over there is k = 2.18 - 0.01365TC and not k ...

  4. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [1] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.

  5. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    with k 0 a constant. For pure metals, k 0 is large, so the thermal conductivity is high. At higher temperatures the mean free path is limited by the phonons, so the thermal conductivity tends to decrease with temperature. In alloys the density of the impurities is very high, so l and, consequently k, are small. Therefore, alloys, such as ...

  6. Bending (metalworking) - Wikipedia

    en.wikipedia.org/wiki/Bending_(metalworking)

    The K-factor formula does not take the forming stresses into account but is simply a geometric calculation of the location of the neutral line after the forces are applied and is thus the roll-up of all the unknown (error) factors for a given setup. The K-factor depends on many variables including the material, the type of bending operation ...

  7. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...

  8. K-factor - Wikipedia

    en.wikipedia.org/wiki/K-factor

    K-factor (Elo rating system), a constant used in Elo rating system; K-factor (marketing), the growth rate of websites, apps, or a customer base; K-factor (sheet metal), the ratio of location of the neutral line to the material thickness; The K Factor, a fictional TV show within Harry Hill's TV Burp; Bondi k-factor, the "k" in Bondi k-calculus

  9. Stainless steel - Wikipedia

    en.wikipedia.org/wiki/Stainless_steel

    Stainless steel, also known as inox, corrosion-resistant steel (CRES), and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains iron with chromium and other elements such as molybdenum , carbon , nickel and nitrogen depending on its specific use and cost.