enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method, in its original version, has several caveats: It does not work if the Hessian is not invertible. This is clear from the very definition of Newton's method, which requires taking the inverse of the Hessian. It may not converge at all, but can enter a cycle having more than 1 point. See the Newton's method § Failure analysis.

  4. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, [1] is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's ...

  5. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  6. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Closely related to Newton's method are Halley's method and Laguerre's method. Both use the polynomial and its two first derivations for an iterative process that has a cubic convergence. Combining two consecutive steps of these methods into a single test, one gets a rate of convergence of 9, at the cost of 6 polynomial evaluations (with Horner ...

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    The Newton series consists of the terms of the Newton forward difference equation, named after Isaac Newton; in essence, it is the Gregory–Newton interpolation formula [9] (named after Isaac Newton and James Gregory), first published in his Principia Mathematica in 1687, [10] [11] namely the discrete analog of the continuous Taylor expansion,

  8. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    In the vast majority of cases, the equation to be solved when using an implicit scheme is much more complicated than a quadratic equation, and no analytical solution exists. Then one uses root-finding algorithms, such as Newton's method, to find the numerical solution. Crank-Nicolson method. With the Crank-Nicolson method

  9. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    Given a set of n+1 data points (x i, y i) where no two x i are the same, the interpolating polynomial is the polynomial p of degree at most n with the property p(x i) = y i for all i = 0,...,n. This polynomial exists and it is unique. Neville's algorithm evaluates the polynomial at some point x.