Search results
Results from the WOW.Com Content Network
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when dissolved in water. Sodium hydroxide (NaOH) is an Arrhenius base because it dissociates the hydroxide ion when it is dissolved in water. [3]
Most of the solute does not dissociate in a weak electrolyte, whereas in a strong electrolyte a higher ratio of solute dissociates to form free ions. A weak electrolyte is a substance whose solute exists in solution mostly in the form of molecules (which are said to be "undissociated"), with only a small fraction in the form of ions.
The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [5] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base.
The solvent (e.g. water) is omitted from this expression when its concentration is effectively unchanged by the process of acid dissociation. The strength of a weak acid can be quantified in terms of a dissociation constant , K a {\displaystyle K_{a}} , defined as follows, where [ H ] {\displaystyle {\ce {[H]}}} signifies the concentration of a ...
Electrolytes dissociate in water because water molecules are dipoles and the dipoles orient in an energetically favorable manner to solvate the ions. In other systems, the electrode reactions can involve the metals of the electrodes as well as the ions of the electrolyte.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
As an example, the molecules of table sugar dissociate in water (sugar is dissolved) but exist as intact neutral entities. Another subtle event is the dissociation of sodium chloride (table salt) into sodium and chlorine ions. Although it may seem as a case of ionization, in reality the ions already exist within the crystal lattice.