Search results
Results from the WOW.Com Content Network
14, OR, Logical disjunction; 15, true, Tautology. Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
A clause is a disjunction of literals (or a single literal). A clause is called a Horn clause if it contains at most one positive literal. A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses (or a single clause). For example, x 1 is a positive literal, ¬x 2 is a negative literal, and x 1 ∨ ¬x 2 is a clause.
In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives.A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term).
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
In a Hilbert system, the premises and conclusion of the inference rules are simply formulae of some language, usually employing metavariables.For graphical compactness of the presentation and to emphasize the distinction between axioms and rules of inference, this section uses the sequent notation instead of a vertical presentation of rules.
In logic, a standardized way of expressing logical formulas, such as conjunctive normal form (CNF) or disjunctive normal form (DNF), to facilitate analysis or computation. normal modal logic A class of modal logics that include the necessitation rule and the distribution axiom, allowing for the derivation of necessary truths from given axioms ...
In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or — in philosophical logic — a cluster concept. [1] As a normal form, it is useful in automated theorem proving.
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.