enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    As a result, the method of Lagrange multipliers is widely used to solve challenging constrained optimization problems. Further, the method of Lagrange multipliers is generalized by the Karush–Kuhn–Tucker conditions , which can also take into account inequality constraints of the form h ( x ) ≤ c {\displaystyle h(\mathbf {x} )\leq c} for a ...

  3. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    In each iteration of the method, we increase the penalty coefficient (e.g. by a factor of 10), solve the unconstrained problem and use the solution as the initial guess for the next iteration. Solutions of the successive unconstrained problems will asymptotically converge to the solution of the original constrained problem.

  4. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    The most common case is the case in which the graph admits a one-sided-perfect matching (i.e., a matching of size r), and s=r. Unbalanced assignment can be reduced to a balanced assignment. The naive reduction is to add n − r {\displaystyle n-r} new vertices to the smaller part and connect them to the larger part using edges of cost 0.

  5. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.

  6. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    In general this may be hard, as we need to solve a different minimization problem for every λ. But for some classes of functions, it is possible to get an explicit formula for g(). Solving the primal and dual programs together is often easier than solving only one of them. Examples are linear programming and quadratic programming.

  7. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    Chan (2004) describes an algorithm for solving implicitly defined LP-type problems such as this one in which each LP-type element is determined by a k-tuple of input values, for some constant k. In order to apply his approach, there must exist a decision algorithm that can determine, for a given LP-type basis B and set S of n input values ...

  8. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The strong duality theorem says that if one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight, i.e.: max x c T x = min y b T y. The strong duality theorem is harder to prove; the proofs usually use the weak duality theorem as a sub-routine.

  9. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...