Search results
Results from the WOW.Com Content Network
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
Most modern deep learning models are based on multi-layered neural networks such as convolutional neural networks and transformers, although they can also include propositional formulas or latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep Boltzmann machines.
Alternatively, it is a hierarchical generative model for deep learning, which is highly effective in image processing and object recognition, though it has been used in other domains too. [2] The salient features of the model include the fact that it scales well to high-dimensional images and is translation-invariant. [3]
A deep CNN of (Dan Cireșan et al., 2011) at IDSIA was 60 times faster than an equivalent CPU implementation. [12] Between May 15, 2011, and September 10, 2012, their CNN won four image competitions and achieved SOTA for multiple image databases. [13] [14] [15] According to the AlexNet paper, [1] Cireșan's earlier net is "somewhat similar."
The models and the code were released under Apache 2.0 license on GitHub. [4] An individual Inception module. On the left is a standard module, and on the right is a dimension-reduced module. A single Inception dimension-reduced module. The Inception v1 architecture is a deep CNN composed of 22 layers. Most of these layers were "Inception modules".
A convolutional neural network (CNN, or ConvNet or shift invariant or space invariant) is a class of deep network, composed of one or more convolutional layers with fully connected layers (matching those in typical ANNs) on top. [17] [18] It uses tied weights and pooling layers. In particular, max-pooling. [19]
U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014). "Fully convolutional networks for semantic segmentation". [2]
In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer.