Search results
Results from the WOW.Com Content Network
A first order reaction depends on the concentration of only one reactant (a unimolecular reaction). Other reactants can be present, but their concentration has no effect on the rate. The rate law for a first order reaction is [] = [], The unit of k is s-1. [18]
A first-order approximation is to assume that the two different reaction products have different heat capacities. Incorporating this assumption yields an additional term c / T 2 in the expression for the equilibrium constant as a function of temperature.
For a first-order reaction, it has units of s −1. For that reason, it is often called frequency factor . According to collision theory , the frequency factor, A, depends on how often molecules collide when all concentrations are 1 mol/L and on whether the molecules are properly oriented when they collide.
First-order logic, a formal logical system used in mathematics, philosophy, linguistics, and computer science; First-order predicate, a predicate that takes only individual(s) constants or variables as argument(s) First-order predicate calculus; First-order theorem provers; First-order theory; Monadic first-order logic
Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...
In a substituted-enzyme mechanism slow steps are not needed to generate memory effects. Instead, for an enzyme with several alternative substrates the kinetic properties of the second half reaction may vary with different substrates in the first half reaction, even though the same substituted enzyme seems to be transformed. [34]
If you've been having trouble with any of the connections or words in Tuesday's puzzle, you're not alone and these hints should definitely help you out. Plus, I'll reveal the answers further down ...
The reaction order is 1 with respect to B and −1 with respect to A. Reactant A inhibits the reaction at all concentrations. The following reactions follow a Langmuir–Hinshelwood mechanism: [4] 2 CO + O 2 → 2 CO 2 on a platinum catalyst. CO + 2H 2 → CH 3 OH on a ZnO catalyst. C 2 H 4 + H 2 → C 2 H 6 on a copper catalyst. N 2 O + H 2 ...