Ad
related to: functions and relationships maths
Search results
Results from the WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ordinary functions. This is typically the case when functions may be specified in a way that makes difficult or even impossible to determine their domain.
A modern, abstract point of view contrasts large function spaces, which are infinite-dimensional and within which most functions are 'anonymous', with special functions picked out by properties such as symmetry, or relationship to harmonic analysis and group representations. See also List of types of functions
Russell symbolizes the descriptive function as "the object standing in relation to y": R'y = DEF (ιx)(x R y). Russell repeats that "R'y is a function of y, but not a propositional function [sic]; we shall call it a descriptive function. All the ordinary functions of mathematics are of this kind.
Holomorphic function: complex-valued function of a complex variable which is differentiable at every point in its domain. Meromorphic function: complex-valued function that is holomorphic everywhere, apart from at isolated points where there are poles. Entire function: A holomorphic function whose domain is the entire complex plane.
The equivalence relations on any set X, when ordered by set inclusion, form a complete lattice, called Con X by convention. The canonical map ker : X^X → Con X, relates the monoid X^X of all functions on X and Con X. ker is surjective but not injective. Less formally, the equivalence relation ker on X, takes each function f : X → X to its ...
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
Mathematical relations fall into various types according to their specific properties, often as expressed in the axioms or definitions that they satisfy. Many of these types of relations are listed below.
Ad
related to: functions and relationships maths