Search results
Results from the WOW.Com Content Network
Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers a < b, no matter how close they are to each other, there are always infinitely many other real numbers, and Cantor showed that they are as many as those ...
The cardinality of the natural numbers is denoted aleph-null (), while the cardinality of the real numbers is denoted by "" (a lowercase fraktur script "c"), and is also referred to as the cardinality of the continuum.
As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.
For a continuous (see below for a definition) real-valued function with a connected domain, the image is either an interval or a single value. In the latter case, the function is a constant function. The preimage of a given real number y is the set of the solutions of the equation y = f(x).
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.
A real function that is a function from real numbers to real numbers can be represented by a graph in the Cartesian plane; such a function is continuous if, roughly speaking, the graph is a single unbroken curve whose domain is the entire real line. A more mathematically rigorous definition is given below.
The most frequently used cardinal function is the function that assigns to a set A its cardinality, denoted by |A|. Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.
Continuous probability distribution: Sometimes this term is used to mean a probability distribution whose cumulative distribution function (c.d.f.) is (simply) continuous. Sometimes it has a less inclusive meaning: a distribution whose c.d.f. is absolutely continuous with respect to Lebesgue measure. This less inclusive sense is equivalent to ...