Search results
Results from the WOW.Com Content Network
The polynomial has a multiple root if and only if its discriminant is zero. If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots.
Richard Dedekind showed that every number field possesses an integral basis, allowing him to define the discriminant of an arbitrary number field. [16] The definition of the discriminant of a general algebraic number field, K, was given by Dedekind in 1871. [16] At this point, he already knew the relationship between the discriminant and ...
For quadratic equations with rational coefficients, if the discriminant is a square number, then the roots are rational—in other cases they may be quadratic irrationals. If the discriminant is zero, then there is exactly one real root − b 2 a , {\displaystyle -{\frac {b}{2a}},} sometimes called a repeated or double root or two equal roots.
In particular √ D belongs to [], being a root of the equation x 2 − D = 0, which has 4D as its discriminant. The square root of any integer is a quadratic integer, as every integer can be written n = m 2 D, where D is a square-free integer, and its square root is a root of x 2 − m 2 D = 0.
Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.
If the three roots are real and distinct, the discriminant is a product of positive reals, that is > If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative.
K is a number field. [K : Q] = n = r 1 + 2r 2, where r 1 denotes the number of real embeddings of K, and 2r 2 is the number of complex embeddings of K. ζ K (s) is the Dedekind zeta function of K. h K is the class number, the number of elements in the ideal class group of K. Reg K is the regulator of K. w K is the number of roots of unity ...
In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group G is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial p and has, roughly speaking, a rational root if and only if the Galois group of p is included in G.