enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    The polynomial has a multiple root if and only if its discriminant is zero. If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots.

  3. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    Richard Dedekind showed that every number field possesses an integral basis, allowing him to define the discriminant of an arbitrary number field. [16] The definition of the discriminant of a general algebraic number field, K, was given by Dedekind in 1871. [16] At this point, he already knew the relationship between the discriminant and ...

  4. Field trace - Wikipedia

    en.wikipedia.org/wiki/Field_trace

    If the characteristic of GF(q) is odd, the discriminant Δ = b 2 − 4ac indicates the number of roots in GF(q) and the classical quadratic formula gives the roots. However, when GF(q) has even characteristic (i.e., q = 2 h for some positive integer h), these formulas are no longer applicable.

  5. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.

  6. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    For quadratic equations with rational coefficients, if the discriminant is a square number, then the roots are rational—in other cases they may be quadratic irrationals. If the discriminant is zero, then there is exactly one real root − b 2 a , {\displaystyle -{\frac {b}{2a}},} sometimes called a repeated or double root or two equal roots.

  7. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.

  8. Class number formula - Wikipedia

    en.wikipedia.org/wiki/Class_number_formula

    K is a number field. [K : Q] = n = r 1 + 2r 2, where r 1 denotes the number of real embeddings of K, and 2r 2 is the number of complex embeddings of K. ζ K (s) is the Dedekind zeta function of K. h K is the class number, the number of elements in the ideal class group of K. Reg K is the regulator of K. w K is the number of roots of unity ...

  9. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis occurs when none of the roots are rational and when all three roots are distinct and real; the case of three distinct real roots occurs if and only if ⁠ q 2 / 4 ⁠ + ⁠ p 3 / 27 ⁠ < 0, in which case Cardano's formula involves first taking the square root of a negative number, which is imaginary, and then taking the ...