Search results
Results from the WOW.Com Content Network
A constant coefficient, also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter c, involved in 3=c ⋅ x 0.
There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k is given by (), while the number of ways to write = + + + where every a i is a nonnegative integer is ...
Note: "lc" stands for the leading coefficient, the coefficient of the highest degree of the variable. This algorithm computes not only the greatest common divisor (the last non zero r i), but also all the subresultant polynomials: The remainder r i is the (deg(r i−1) − 1)-th subresultant polynomial.
A method by Zhonggang Zeng (2004), implemented as a MATLAB package, computes multiple roots and corresponding multiplicities of a polynomial accurately even if the coefficients are inexact. [3] [4] [5] The method can be summarized in two steps. Let be the given polynomial.
Using the cross product as a Lie bracket, the algebra of 3-dimensional real vectors is a Lie algebra isomorphic to the Lie algebras of SU(2) and SO(3). The structure constants are f a b c = ϵ a b c {\displaystyle f^{abc}=\epsilon ^{abc}} , where ϵ a b c {\displaystyle \epsilon ^{abc}} is the antisymmetric Levi-Civita symbol .
It may happen that this makes the coefficient 0. [12] Polynomials can be classified by the number of terms with nonzero coefficients, so that a one-term polynomial is called a monomial, [d] a two-term polynomial is called a binomial, and a three-term polynomial is called a trinomial. A real polynomial is a polynomial with real coefficients.
A given monomial's presence or absence in a polynomial corresponds to that monomial's coefficient being 1 or 0 respectively. The Zhegalkin monomials, being linearly independent, span a 2 n-dimensional vector space over the Galois field GF(2) (NB: not GF(2 n), whose multiplication is quite different).
In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenvalue is the measure of the resulting change of magnitude of the vector.