Search results
Results from the WOW.Com Content Network
Such proofs often use computational proof methods and may be considered non-surveyable. As of 2011, the longest mathematical proof, measured by number of published journal pages, is the classification of finite simple groups with well over 10000 pages. There are several proofs that would be far longer than this if the details of the computer ...
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Green and Tao's proof has three main components: Szemerédi's theorem , which asserts that subsets of the integers with positive upper density have arbitrarily long arithmetic progressions. It does not a priori apply to the primes because the primes have density zero in the integers.
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Pages which contain only proofs (of claims made in other articles) should be placed in the subcategory Category:Article proofs. Pages which contain theorems and their proofs should be placed in the subcategory Category:Articles containing proofs. Articles related to automatic theorem proving should be placed in Category:Automated theorem proving.