enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is c = 2 ℵ 0 > ℵ 0 . {\displaystyle {\mathfrak {c}}=2^{\aleph _{0}}>\aleph _{0}.} This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities.

  3. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    Cantor's diagonal argument shows that is strictly greater than , but it does not specify whether it is the least cardinal greater than (that is, ).Indeed the assumption that = is the well-known Continuum Hypothesis, which was shown to be consistent with the standard ZFC axioms for set theory by Kurt Gödel and to be independent of it by Paul Cohen.

  4. Continuum (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuum_(set_theory)

    The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or alternatively, that c = ℵ 1 {\displaystyle {\mathfrak {c}}=\aleph _{1}} .

  5. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    An infinite set may have the same cardinality as a proper subset of itself, as the depicted bijection f(x)=2x from the natural to the even numbers demonstrates. Nevertheless, infinite sets of different cardinalities exist, as Cantor's diagonal argument shows.

  6. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    The independence proof just described shows that CH is independent of ZFC. Further research has shown that CH is independent of all known large cardinal axioms in the context of ZFC. [8] Moreover, it has been shown that the cardinality of the continuum can be any cardinal consistent with König's theorem.

  7. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    When two sets, ⁠ ⁠ and ⁠ ⁠, have the same cardinality, it is usually written as | | = | |; however, if referring to the cardinal number of an individual set , it is simply denoted | |, with a vertical bar on each side; [3] this is the same notation as absolute value, and the meaning depends on context.

  8. Perfect set - Wikipedia

    en.wikipedia.org/wiki/Perfect_set

    Thus X has cardinality at least . If X is a separable , complete metric space with no isolated points, the cardinality of X is exactly 2 ℵ 0 {\displaystyle 2^{\aleph _{0}}} . If X is a locally compact Hausdorff space with no isolated points, there is an injective function (not necessarily continuous) from Cantor space to X , and so X has ...

  9. List of continuity-related mathematical topics - Wikipedia

    en.wikipedia.org/wiki/List_of_continuity-related...

    Continuous probability distribution: Sometimes this term is used to mean a probability distribution whose cumulative distribution function (c.d.f.) is (simply) continuous. Sometimes it has a less inclusive meaning: a distribution whose c.d.f. is absolutely continuous with respect to Lebesgue measure. This less inclusive sense is equivalent to ...