Search results
Results from the WOW.Com Content Network
Selecting these n h optimally can be done in various ways, using (for example) Neyman's optimal allocation. There are many reasons to use stratified sampling: [7] to decrease variances of sample estimates, to use partly non-random methods, or to study strata individually. A useful, partly non-random method would be to sample individuals where ...
Somewhat surprisingly for an optimal control problem, a closed-form solution exists. The optimal consumption and stock allocation depend on wealth and time as follows: [4]: 401 (,) =. This expression is commonly referred to as Merton's fraction.
Proportionate allocation uses a sampling fraction in each of the strata that are proportional to that of the total population. For instance, if the population consists of n total individuals, m of which are male and f female (and where m + f = n), then the relative size of the two samples (x 1 = m/n males, x 2 = f/n females) should reflect this proportion.
Example of the optimal Kelly betting fraction, versus expected return of other fractional bets. In probability theory, the Kelly criterion (or Kelly strategy or Kelly bet) is a formula for sizing a sequence of bets by maximizing the long-term expected value of the logarithm of wealth, which is equivalent to maximizing the long-term expected geometric growth rate.
The envelope theorem describes how the value of an optimal solution changes when an underlying parameter changes. The process of computing this change is called comparative statics. The maximum theorem of Claude Berge (1963) describes the continuity of an optimal solution as a function of underlying parameters.
Stratified sampling can yield that is smaller than 1 when using Proportionate allocation to strata sizes (when these are known a-priori, and correlated to the outcome of interest) or Optimum allocation (when the variance differs between strata and is known a-priori). [citation needed]
Language links are at the top of the page. Search. Search
Portfolio optimization is the process of selecting an optimal portfolio (asset distribution), out of a set of considered portfolios, according to some objective.The objective typically maximizes factors such as expected return, and minimizes costs like financial risk, resulting in a multi-objective optimization problem.