Search results
Results from the WOW.Com Content Network
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
It zig-zags towards the minimum, but repeatedly overshoots. In contrast, if we pick the directions to be a set of mutually conjugate directions, then there will be no overshoot, and we would obtain the global minimum after steps, where is the number of dimensions. Two conjugate diameters of an ellipse.
The short BB step size is same as a linearized minimum-residual step. BB applies the step sizes upon the forward direction vector for the next iterate, instead of the prior direction vector as if for another line-search step. Barzilai and Borwein proved their method converges R-superlinearly for quadratic minimization in two dimensions.
The step size can be determined either exactly or inexactly. Here is an example gradient method that uses a line search in step 5: Set iteration counter k = 0 {\displaystyle k=0} and make an initial guess x 0 {\displaystyle \mathbf {x} _{0}} for the minimum.
The same logic applies downstream to determine that the water surface follows an M3 profile from the gate until the depth reaches the conjugate depth of the normal depth at which point a hydraulic jump forms to raise the water surface to the normal depth. Step 4: Use the Newton Raphson Method to solve the M1 and M3 surface water profiles. The ...
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (strong derivative) for functions not assumed differentiable, but only integrable, i.e., to lie in the L p space ([,]).
It is a variant of the biconjugate gradient method (BiCG) and has faster and smoother convergence than the original BiCG as well as other variants such as the conjugate gradient squared method (CGS). It is a Krylov subspace method. Unlike the original BiCG method, it doesn't require multiplication by the transpose of the system matrix.