Search results
Results from the WOW.Com Content Network
Using min heap priority queue in Prim's algorithm to find the minimum spanning tree of a connected and undirected graph, one can achieve a good running time. This min heap priority queue uses the min heap data structure which supports operations such as insert, minimum, extract-min, decrease-key. [23]
Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...
A min-priority queue is an abstract data type that provides 3 basic operations: add_with_priority(), decrease_priority() and extract_min(). As mentioned earlier, using such a data structure can lead to faster computing times than using a basic queue. Notably, Fibonacci heap [19] or Brodal queue offer optimal implementations for those 3 ...
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
Example of a complete binary max-heap Example of a complete binary min heap. A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2]
Double-ended priority queues can be built from balanced binary search trees (where the minimum and maximum elements are the leftmost and rightmost leaves, respectively), or using specialized data structures like min-max heap and pairing heap. Generic methods of arriving at double-ended priority queues from normal priority queues are: [5]
For priority queues and DEPQs, however, dequeuing and enqueuing often take O(log n) time (for example if implemented as a binary heap), while O(1) performance of "peek" (here generally called "find-min" or "find-max") is a key desired characteristic of priority queues, and thus peek is almost invariably implemented separately.
In computer science, a Fibonacci heap is a data structure for priority queue operations, consisting of a collection of heap-ordered trees.It has a better amortized running time than many other priority queue data structures including the binary heap and binomial heap.