enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.

  4. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    Similarly, [1] ⁡ [()] (′ (⁡ [])) ⁡ [] = (′ ()) (″ ()) The above is obtained using a second order approximation, following the method used in estimating ...

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively. methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ...

  6. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  7. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    Furthermore, every polynomial is its own Maclaurin series. The exponential function is analytic. Any Taylor series for this function converges not only for x close enough to x 0 (as in the definition) but for all values of x (real or complex). The trigonometric functions, logarithm, and the power functions are analytic on any open set of their ...

  8. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}

  9. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .