Search results
Results from the WOW.Com Content Network
The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [ 33 ]
In optimization, a gradient method is an algorithm to solve problems of the form with the search directions defined by the gradient of the function at the current point. Examples of gradient methods are the gradient descent and the conjugate gradient.
A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).
Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.
The descent direction can be computed by various methods, such as gradient descent or quasi-Newton method. The step size can be determined either exactly or inexactly. Here is an example gradient method that uses a line search in step 5:
Another way is the so-called adaptive standard GD or SGD, some representatives are Adam, Adadelta, RMSProp and so on, see the article on Stochastic gradient descent. In adaptive standard GD or SGD, learning rates are allowed to vary at each iterate step n, but in a different manner from Backtracking line search for gradient descent.
For example, the gradient of the function (,,) = + is (,,) = + (). or (,,) = []. In some applications it is customary to represent the gradient as a row vector or column vector of its components in a rectangular coordinate system; this article follows the convention of the gradient being a column vector, while the derivative is a row ...
Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method. More generally, if is a positive definite matrix, then = is a descent direction at . [1]