Search results
Results from the WOW.Com Content Network
For example, static friction can prevent an object from sliding down a sloped surface. The coefficient of static friction, typically denoted as μ s, is usually higher than the coefficient of kinetic friction. Static friction is considered to arise as the result of surface roughness features across multiple length scales at solid surfaces.
Standard symbol Definition Field of application Coefficient of kinetic friction: mechanics (friction of solid bodies in translational motion) Coefficient of static friction: mechanics (friction of solid bodies at rest) Dieterich-Ruina-Rice number
coefficient of friction: unitless (dynamic) viscosity (also ) pascal second (Pa⋅s) permeability (electromagnetism) henry per meter (H/m) reduced mass: kilogram (kg) Standard gravitational parameter: cubic meter per second squared mu nought Vacuum permeability or the magnetic constant
If the coefficient of static friction μ s is known of a material, then a good approximation of the angle of repose can be made with the following function. This function is somewhat accurate for piles where individual objects in the pile are minuscule and piled in random order.
the coefficient of friction (also used in aviation as braking coefficient (see Braking action)) reduced mass in the two-body problem; Standard gravitational parameter in celestial mechanics; linear density, or mass per unit length, in strings and other one-dimensional objects; permeability in electromagnetism
Micrometre or micron (retired in 1967 as a standalone symbol, replaced by "μm" using the standard SI meaning) the coefficient of friction in physics; the service rate in queueing theory; the dynamic viscosity in physics; magnetic permeability in electromagnetics; a muon; reduced mass; the ion mobility in plasma physics
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m −1 s −1); R is the radius of the spherical object (meters); is the flow velocity relative to the object (meters per second). Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion.