Search results
Results from the WOW.Com Content Network
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e.g. the atom or molecule positions in a crystal, or more generally, the orbit of a group action under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in ...
Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).
A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms ...
Complete lattice: a lattice in which arbitrary meet and joins exist. Bounded lattice: a lattice with a greatest element and least element. Complemented lattice: a bounded lattice with a unary operation, complementation, denoted by postfix ⊥. The join of an element with its complement is the greatest element, and the meet of the two elements ...
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. [1] Algebraic structures include groups , rings , fields , modules , vector spaces , lattices , and algebras over a field .
Vectors and planes in a crystal lattice are described by the three-value Miller index notation. This syntax uses the indices h, k, and â„“ as directional parameters. [4] By definition, the syntax (hkâ„“) denotes a plane that intercepts the three points a 1 /h, a 2 /k, and a 3 /â„“, or some multiple thereof. That is, the Miller indices are ...
In mathematics, an algebraic structure or algebraic system [1] consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities (known as axioms) that these operations must satisfy.