Search results
Results from the WOW.Com Content Network
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number, which prefers a single variable for flow analysis rather than the set of variables as listed in the table below. The Manning formula contains a quantity called the hydraulic radius.
In case of 1-D Reynolds equation several analytical or semi-analytical solutions are available. In 1916 Martin obtained a closed form solution [5] for a minimum film thickness and pressure for a rigid cylinder and plane geometry. This solution is not accurate for the cases when the elastic deformation of the surfaces contributes considerably to ...
Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.
An orifice with a flow coefficient of 0.59 would flow the same amount of fluid as a perfect orifice with 59% of its area or 59% of the flow of a perfect orifice with the same area (orifice plates of the type shown would have a coefficient of between 0.58 and 0.62 depending on the precise details of construction and the surrounding installation ...
It also features expanded tables and cases, improved notations and figures within the tables, consistent table and equation numbering, and verification of correction factors. The formulas are organized into tables in a hierarchical format: chapter, table, case, subcase, and each case and subcase is accompanied by diagrams.
Where is the dimensionless Strouhal number, is the vortex shedding frequency (Hz), is the diameter of the cylinder (m), and is the flow velocity (m/s). The Strouhal number depends on the Reynolds number R e {\displaystyle \mathrm {Re} } , [ 5 ] but a value of 0.22 is commonly used. [ 6 ]
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel: