Search results
Results from the WOW.Com Content Network
Cosmic ray astronomy is a branch of observational astronomy where scientists attempt to identify and study the potential sources of extremely high-energy (ranging from 1 MeV to more than 1 EeV) charged particles called cosmic rays coming from outer space.
Shower detection. A cosmic-ray observatory is a scientific installation built to detect high-energy-particles coming from space called cosmic rays.This typically includes photons (high-energy light), electrons, protons, and some heavier nuclei, as well as antimatter particles.
High-energy astronomy is the study of astronomical objects that release electromagnetic radiation of highly energetic wavelengths. It includes X-ray astronomy, gamma-ray astronomy, extreme UV astronomy, neutrino astronomy, and studies of cosmic rays. The physical study of these phenomena is referred to as high-energy astrophysics. [1]
The magnitude of the energy of cosmic ray flux in interstellar space is very comparable to that of other deep space energies: cosmic ray energy density averages about one electron-volt per cubic centimetre of interstellar space, or ≈1 eV/cm 3, which is comparable to the energy density of visible starlight at 0.3 eV/cm 3, the galactic magnetic ...
This is a list of sources of light, the visible part of the electromagnetic spectrum.Light sources produce photons from another energy source, such as heat, chemical reactions, or conversion of mass or a different frequency of electromagnetic energy, and include light bulbs and stars like the Sun. Reflectors (such as the moon, cat's eyes, and mirrors) do not actually produce the light that ...
A spectral energy distribution (SED) is a plot of energy versus frequency or wavelength of light (not to be confused with a 'spectrum' of flux density vs frequency or wavelength). [1] It is used in many branches of astronomy to characterize astronomical sources.
This is a list of reflected sources of light examples in contrast to the List of light sources. The list is oriented towards visible light reflection.
Active galactic nuclei are the most luminous persistent sources of electromagnetic radiation in the universe and, as such, can be used as a means of discovering distant objects; their evolution as a function of cosmic time also puts constraints on models of the cosmos.