enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. GeneMark - Wikipedia

    en.wikipedia.org/wiki/GeneMark

    GeneMark is a generic name for a family of ab initio gene prediction algorithms and software programs developed at the Georgia Institute of Technology in Atlanta.Developed in 1993, original GeneMark was used in 1995 as a primary gene prediction tool for annotation of the first completely sequenced bacterial genome of Haemophilus influenzae, and in 1996 for the first archaeal genome of ...

  3. Gene prediction - Wikipedia

    en.wikipedia.org/wiki/Gene_prediction

    The GeneMark-ES and SNAP gene finders are GHMM-based like GENSCAN. They attempt to address problems related to using a gene finder on a genome sequence that it was not trained against. [7] [8] A few recent approaches like mSplicer, [9] CONTRAST, [10] or mGene [11] also use machine learning techniques like support vector machines for successful ...

  4. GLIMMER - Wikipedia

    en.wikipedia.org/wiki/GLIMMER

    Second Version of GLIMMER i.e., GLIMMER 2.0 was released in 1999 and it was published in the paper Improved microbial identification with GLIMMER. [4] This paper [4] provides significant technical improvements such as using interpolated context model instead of interpolated Markov model and resolving overlapping genes which improves the accuracy of GLIMMER.

  5. List of gene prediction software - Wikipedia

    en.wikipedia.org/wiki/List_of_gene_prediction...

    Its name stands for Prokaryotic Dynamic Programming Genefinding Algorithm. It is based on log-likelihood functions and does not use Hidden or Interpolated Markov Models. Prokaryotes, Metagenomes (metaProdigal) [4] AUGUSTUS: Eukaryote gene predictor: Eukaryotes [5] BGF Hidden Markov model (HMM) and dynamic programming based ab initio gene ...

  6. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    In addition, machine learning has been applied to systems biology problems such as identifying transcription factor binding sites using Markov chain optimization. [2] Genetic algorithms, machine learning techniques which are based on the natural process of evolution, have been used to model genetic networks and regulatory structures. [2]

  7. DNA annotation - Wikipedia

    en.wikipedia.org/wiki/DNA_annotation

    Machine learning methods are also used to generate functional annotations for novel proteins based on GO terms. Generally, they consist in constructing a binary classifier for each GO term, which are then joined to make predictions on individual GO terms (forming a multiclass classifier ) for which confidence scores are later obtained.

  8. Genetic algorithm - Wikipedia

    en.wikipedia.org/wiki/Genetic_algorithm

    The word reactive hints at a ready response to events during the search through an internal online feedback loop for the self-tuning of critical parameters. Methodologies of interest for Reactive Search include machine learning and statistics, in particular reinforcement learning, active or query learning, neural networks, and metaheuristics.

  9. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]