enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one point. Because of this, different methods need to be used to solve BVPs.

  3. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming. [5 ...

  4. Method of lines - Wikipedia

    en.wikipedia.org/wiki/Method_of_lines

    Method of lines - the example, which shows the origin of the name of method. The method of lines (MOL, NMOL, NUMOL [1] [2] [3]) is a technique for solving partial differential equations (PDEs) in which all but one dimension is discretized.

  5. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  6. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes.

  7. Spectral method - Wikipedia

    en.wikipedia.org/wiki/Spectral_method

    Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients ...

  8. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    The scheme is always numerically stable and convergent but usually more numerically intensive than the explicit method as it requires solving a system of numerical equations on each time step. The errors are linear over the time step and quadratic over the space step: Δ u = O ( k ) + O ( h 2 ) . {\displaystyle \Delta u=O(k)+O(h^{2}).}

  9. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations , though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation .