enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    The concepts of successor, addition, multiplication and exponentiation are all hyperoperations; the successor operation (producing x + 1 from x) is the most primitive, the addition operator specifies the number of times 1 is to be added to itself to produce a final value, multiplication specifies the number of times a number is to be added to ...

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    A third method drastically reduces the number of operations to perform modular exponentiation, while keeping the same memory footprint as in the previous method. It is a combination of the previous method and a more general principle called exponentiation by squaring (also known as binary exponentiation).

  4. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    Any floating-point type can be modified with complex, and is then defined as a pair of floating-point numbers. Note that C99 and C++ do not implement complex numbers in a code-compatible way – the latter instead provides the class std:: complex. All operations on complex numbers are defined in the <complex.h> header.

  5. Shunting yard algorithm - Wikipedia

    en.wikipedia.org/wiki/Shunting_yard_algorithm

    In computer science, the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation.It can produce either a postfix notation string, also known as reverse Polish notation (RPN), or an abstract syntax tree (AST). [1]

  6. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.

  7. Non-adjacent form - Wikipedia

    en.wikipedia.org/wiki/Non-adjacent_form

    The properties of NAF make it useful in various algorithms, especially some in cryptography; e.g., for reducing the number of multiplications needed for performing an exponentiation. In the algorithm, exponentiation by squaring, the number of multiplications depends on the number of non-zero bits. If the exponent here is given in NAF form, a ...

  8. GNU Multiple Precision Arithmetic Library - Wikipedia

    en.wikipedia.org/wiki/GNU_Multiple_Precision...

    GNU Multiple Precision Arithmetic Library (GMP) is a free library for arbitrary-precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. [3] There are no practical limits to the precision except the ones implied by the available memory (operands may be of up to 2 32 −1 bits on 32-bit machines and 2 37 ...

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Use the extended Euclidean algorithm to compute k −1, the modular multiplicative inverse of k mod 2 w, where w is the number of bits in a word. This inverse will exist since the numbers are odd and the modulus has no odd factors. For each number in the list, multiply it by k −1 and take the least significant word of the result.