Search results
Results from the WOW.Com Content Network
In constrained least squares one solves a linear least squares problem with an additional constraint on the solution. [ 1 ] [ 2 ] This means, the unconstrained equation X β = y {\displaystyle \mathbf {X} {\boldsymbol {\beta }}=\mathbf {y} } must be fit as closely as possible (in the least squares sense) while ensuring that some other property ...
Remove j from R. Let A P be A restricted to the variables included in P. Let s be vector of same length as x. Let s P denote the sub-vector with indexes from P, and let s R denote the sub-vector with indexes from R. Set s P = ((A P) T A P) −1 (A P) T y; Set s R to zero; While min(s P) ≤ 0: Let α = min x i / x i − s i for i in P ...
The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.
Otherwise, an additional linear constraint (a cutting plane or cut) is found that separates the resulting fractional solution from the convex hull of the integer solutions, and the method repeats on this new more tightly constrained problem. Problem-specific methods are needed to find the cuts used by this method.
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]
For every variable giving a degree of freedom, there exists a corresponding constraint removing a degree of freedom. The underdetermined case, by contrast, occurs when the system has been underconstrained—that is, when the unknowns outnumber the equations.
In constraint logic programming, lists are allowed as values of variables. A constraint element(I, L, X) is satisfied if L is a list and X is the I-th element of this list. Specialized constraint propagation rules for these constraints exist. As an example, if L and I are reduced to a single-value domain, a unique value for X can be