Search results
Results from the WOW.Com Content Network
Finding all roots; Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.
However, for polynomials, there are specific algorithms that use algebraic properties for certifying that no root is missed and for locating the roots in separate intervals (or disks for complex roots) that are small enough to ensure the convergence of numerical methods (typically Newton's method) to the unique root within each interval (or disk).
For finding real roots of a polynomial, the common strategy is to divide the real line (or an interval of it where root are searched) into disjoint intervals until having at most one root in each interval. Such a procedure is called root isolation, and a resulting interval that contains exactly one root is an isolating interval for this root.
The Vincent–Alesina–Galuzzi (VAG) method is the simplest of all methods derived from Vincent's theorem but has the most time consuming test (in line 1) to determine if a polynomial has roots in the interval of interest; this makes it the slowest of the methods presented in this article.
The input for the method is a continuous function f, an interval [a, b], and the function values f(a) and f(b). The function values are of opposite sign (there is at least one zero crossing within the interval). Each iteration performs these steps: Calculate c, the midpoint of the interval, c = a + b / 2 .
By subdividing the intervals containing some roots, it can isolate the roots into arbitrarily small intervals, each containing exactly one root. This yields the oldest real-root isolation algorithm, and arbitrary-precision root-finding algorithm for univariate polynomials.
In mathematics, Budan's theorem is a theorem for bounding the number of real roots of a polynomial in an interval, and computing the parity of this number. It was published in 1807 by François Budan de Boislaurent. A similar theorem was published independently by Joseph Fourier in 1820. Each of these theorems is a corollary of the other.
The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.